top of page

Have we unknowingly altered the Maize Microbiome interaction? 

Plant hosts selectively filter microorganisms that colonize their rhizosphere. This selective process is heritable across plant cultivars, yet the implication of this selection on rhizosphere microbiome function has been relatively unexplored. In modern agriculture, microbiome functions that contribute to crop growth and sustainability have been replaced with agronomic management practices, and the development of modern crop germplasm has been carried out without consideration of the plant microbiome and its functions as an extended phenotype of the crop genome. As time machines are currently not available to explore long-term temporal changes, we had to think creatively to tackle our questions. Inspired by ecological chronosequence studies in soils, forests, and plant communities, we decided to construct a germplasm chronosequence of maize lines that spanned the time period of development ranging from 1949 to 1986. This was possible because of the Plant Variety Protection Act and the outstanding maize germplasm preservation work by the  National Plant Germplasm System and the Germplasm Resource Information Network (GRIN). We hoped that our selected lines acted as a genotypic time capsule of the extended microbiome phenotype selected by the historic agronomic breeding environment. This time frame was selected as it covers the introduction and increased usage of synthetic N-fertilizers and advances in maize breeding.











In our paper, we found that genetic relatedness of the host plant and the decade of germplasm development were significant factors in the recruitment of the rhizosphere microbiome. More recently developed germplasm recruited fewer microbial taxa with the genetic capability for sustainable nitrogen provisioning and larger populations of microorganisms contributing to N losses.
While these results are interesting, they present an alarming problem: our study broadly indicates that the development of high-yielding varieties and agronomic management approaches of industrial agriculture has inadvertently modified interactions between maize and its microbiome. Our agricultural practices have unintentionally altered the ecology of maize roots – alterations that appear to have resulted in a potentially less sustainable outcome. What other important ecologically sustainable traits might we have inadvertently altered with good intentions in mind, and are they contributing to our current global climate crisis?
Hopefully, this study can highlight these problems and act as a starting point to create more sustainable agricultural systems with a microbe-centric point of view.


Going Further Back into Maize's History

As we previously found that the modern industrial breeding altered maize's relationship with the N-cycling microbiome it host's in the rhizosphere. We were interested in taking a step further back to see how maize's wild progenitor, teosinte, differs in microbial recruitment to the rhizosphere.  The results from this study suggest that domestication and breeding has resulted in altered interaction with the N-cycling microbiome. These wild N-cycling microbiome traits are interesting as they may have the potential to be incorporated into modern breeding programs to improve sustainability.

bottom of page